Виды механической энергии. Механическая энергия Из чего состоит механическая энергия

Полная механическая энергия тела равна сумме его кинетической и потенциальной энергии.

Полную механическую энергию рассматривают в тех случаях, когда действует закон сохранения энергии и она остаётся постоянной.

Если на движение тела не оказывают влияния внешние силы, например, нет взаимодействия с другими телами, нет силы трения или силы сопротивления движению, тогда полная механическая энергия тела остаётся неизменной во времени.

E пот + E кин = const

Разумеется, что в повседневной жизни не существует идеальной ситуации, в которой тело полностью сохраняло бы свою энергию, так как любое тело вокруг нас взаимодействует хотя бы с молекулами воздуха и сталкивается с сопротивлением воздуха. Но, если сила сопротивления очень мала и движение рассматривается в относительно коротком промежутке времени, тогда такую ситуацию можно приближённо считать теоретически идеальной.

Закон сохранения полной механической энергии обычно применяют при рассмотрении свободного падения тела, при его вертикальном подбрасывании или в случае колебаний тела.

Пример:

При вертикальном подбрасывании тела его полная механическая энергия не меняется, а кинетическая энергия тела переходит в потенциальную и наоборот.

Преобразование энергии отображено на рисунке и в таблице.

Точка нахождения тела

Потенциальная энергия

Кинетическая энергия

Полная механическая энергия

E пот = m ⋅ g ⋅ h (max)

E полная = m ⋅ g ⋅ h

2) Средняя

(h = средняя)

E пот = m ⋅ g ⋅ h

E кин = m ⋅ v 2 2

E полная = m ⋅ v 2 2 + m ⋅ g ⋅ h

E кин = m ⋅ v 2 2 (max)

E полная = m ⋅ v 2 2

Исходя из того, что в начале движения величина кинетической энергии тела одинакова с величиной его потенциальной энергии в верхней точке траектории движения, для расчётов могут быть использованы ещё две формулы.

Если известна максимальная высота, на которую поднимается тело, тогда можно определить максимальную скорость движения по формуле:

v max = 2 ⋅ g ⋅ h max .

Если известна максимальная скорость движения тела, тогда можно определить максимальную высоту, на которую поднимается тело, брошенное вверх, по такой формуле:

h max = v max 2 2 g .

Чтобы отобразить преобразование энергии графически, можно использовать имитацию «Энергия в скейт-парке », в которой человек, катающийся на роликовой доске (скейтер) перемещается по рампе. Чтобы изобразить идеальный случай, предполагается, что не происходит потерь энергии в связи с трением. На рисунке показана рампа со скейтером, и далее на графике показана зависимость механической энергии от места положения скейтера на траектории.

На графике синей пунктирной линией показано изменение потенциальной энергии. В средней точке рампы потенциальная энергия равна \(нулю\). Зелёной пунктирной линией показано изменение кинетической энергии. В верхних точках рампы кинетическая энергия равна \(нулю\). Жёлто-зелёная линия изображает полную механическую энергию - сумму потенциальной и кинетической - в каждый момент движения и в каждой точке траектории. Как видно, она остаётся \(неизменной\) во всё время движения. Частота точек характеризует скорость движения - чем дальше точки расположены друг от друга, тем больше скорость движения.

Если тело может совершить механическую работу, то оно обладает механической энергией Е (Дж). Либо, если внешняя сила совершает работу, воздействуя на тело, его энергия изменяется.

Сучествует два вида механической энергии: кинетическая и потенциальная.

Кинетическая энергия – энергия движущихся тел:

где v (м/с) – модуль скорости, m – масса тела.

Потенциальная энергия – энергия взаимодействующих тел.

Примеры потенциальной энергии в механике.

Тело поднято над землей: Е = mgh

где h – высота, определяемая от нулевого уровня (или от нижней точки траектории). Форма траектории не важна, имеет значения только начальная и конечная высота.

Упруго деформированное тело. Деформация, определяемая от положения недеформированного тела (пружины, шнура и т.п.).

Потенциальная энергия упругих тел: , где k – жёсткость пружины; х – её деформация.

Энергия может передаваться от одних тел к другим, а также превращаться из одного вида в другой.

- Полная механическая энергия.

Закон сохранения энергии : в замкнутой системе тел полная энергия не изменяется при любых взаимодействиях внутри этой системы тел.

E k1 + E p1 = E k2 + E p2 .

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной.

2. Трансформатор. Принцип действия. Устройство. Коэффициент трансформации. Передача электроэнергии.
Преобразование переменного тока, при котором напряжение увеличивается или уменьшается в несколько раз практически без потери мощности, осуществляется с помощью трансформаторов.

Трансформатор - устройство, применяемое для повышения или понижения напряжения переменного тока.

Впервые трансформаторы были использованы в 1878г. русским ученым П.Н.Яблочковым для питания изобретенных им «электрических свечей»- нового в то время источника света.

Простейший трансформатор представляет собой две катушки. Намотанные на общий стальной сердечник. Одна катушка подключается к источнику переменного напряжения. Эта катушка называется первичной обмоткой), а с другой катушки (называемой вторичной обмоткой) снимают переменное напряжение для дальнейшей его передачи.

Переменный ток в первичной обмотке создает переменное магнитное поле. Благодаря стальному сердечнику вторичную обмотку, намотанную на тот же сердечник, пронизывает практически такое же переменное поле, что и первичную.

Поскольку все витки пронизываются одним и тем же переменным магнитным потоком , вследствие явления электромагнитной индукции в каждом витке генерируется одно и то же напряжение . Поэтому отношение напряжений 𝑈 1 и 𝑈 2 первичной и вторичной обмотках равно отношению числа витков в них:

Изменение напряжения трансформатором характеризует коэффициент трансформации

Коэффициент трансформации - величина, равная отношению напряжений в первичной и вторичной обмотках трансформатора:

Повышающий трансформатор- трансформатор, увеличивающий напряжение ( У повышающего трансформатора число витков во вторичной обмотке должно быть больше числа витков в первичной обмотке, т.е. к<1.

Понижающий трансформатор – трансформатор, уменьшающий напряжение ( У понижающего трансформатора число витков во вторичной обмотке должно быть меньше числа витков в первичной обмотке, т. е к>1.

Передача электрической энергии от электростанций до больших городов или промышленных центров на расстояния тысяч километров является сложной научно-технической проблемой. Для уменьшения потерь на нагревания проводов необходимо уменьшить силу тока в линии передачи, и, следовательно, увеличить напряжение. Обычно линии электропередачи строятся в расчете на напряжение 400–500 кВ, при этом в линиях используется трехфазный ток частотой 50 Гц.

Билет № 12

Закон Паскаля. Закон Архимеда. Условия плавания тел.

Формулировка закона Паскаля

Давление, производимое на жидкость или газ, передается в любую точку одинаково во всех направлениях. Это утверждение объясняется подвижностью частиц жидкостей и газов во всех направлениях.

На основе закона Паскаля гидростатики работают различные гидравлические устройства: тормозные системы, прессы и др.

Закон Архимеда - это закон статики жидкостей и газов, согласно которому на тело, погруженное в жидкость (или газ), действует выталкивающая сила (сила Архимеда), равная весу вытесненной этим телом жидкости (или газа).

F A = ρgV,
где ρ - плотность жидкости (газа),
g - ускорение свободного падения,
V - объем погруженного тела (или объем той части тела, которую погрузили в жидкость (или газ)).

Архимедова сила направлена всегда противоположно силе тяжести . Она равна нулю, если погруженное в жидкость тело плотно, всем основанием прижато ко дну.
Следует помнить, что в состоянии невесомости закон Архимеда не работает .

РАБОТА И МЕХАНИЧЕСКАЯ ЭНЕРГИЯ.

§1 Энергия. Механическая энергия.

Виды механической энергии. Работа

Энергией называется скалярная физическая величина, являющаяся общей мерой различных форм движения материи.

Энергия количественно характеризует систему относительно различных превращений движения в ней, которые происходят в результате взаимодействия частиц системы как друг с другом, так и с внешними телами. Для анализа различных форм движения вводят различные виды энергии: механическую, внутреннюю, электромагнитную, ядерную и др.

К механической энергии относится энергия, связанная с силами всемирного тяготения, деформированного упругого тела и энергия, связанная с движением тела.

Ещё определения энергии в механике: Энергией называется способность тела совершать работу. Запас энергии определяется работой, которую может совершить тело, изменяя свое состояние: поднятый груз при падении; сжатая пружина при восстановлении формы: движущееся тело при остановке. Механической энергией тела называют величину равную максимальной работе, которую может совершить тело в данных условиях.

І Механическая работа (Работа постоянной силы)


Если тело под действием силы совершает перемещение , работа А этой силы равна скалярному произведению силы на вектор перемещения. Работа силы есть скалярная величина

Работа горизонтальной составляющей силы F - силы F тяги равна ()

Работа вертикальной составляющей силы F - силы подъёма F n равна ()

Сила , направление которой перпендикулярно направлению движению тела, работу не совершает.

Работа силы трения равна ().

Силу, направленную против движения и совершающую отрицательную работу называют силой сопротивления. Сила перпендикулярная к перемещению не изменяет числового значения скорости (такая сила заставляет тело двигаться по окружности - центростремительная сила) и работа ее равна 0.

Сила, увеличивающая численное значение скорости (угол α - о с трый), совершает положительную работу. Сила, уменьшающая численное значение скорости (угол α - ), совершает отрицательную работу.

ІІ . Работа силы тяжести. Консервативные силы.

Определим работу силы тяжести при движении тела массой m по наклонной плоскости, длина которой L , а высота h . На тело действует две силы: сила тяжести, направленная вертикально вниз и сила реакции опоры , направленная перпендикулярно к поверхности плоскости АС. Их равнодействующая 1 совершает работу, сообщая телу ускорение (силой трения пренебрегаем).

из

б) Определим работу, совершаемую силой тяжести при свободном падении тела на высоту.

Сравнение работы, совершаемой силой тяжести при движении по наклонной плоскости и при свободном падении показывает, что работа силы тяжести не зависит от длины и формы пути, пройденного телом, и определяется произведением силы тяжести на разность высот в начальном и конечном положении.

При движении вниз сила тяжести совершает положительную работу, при движении вверх - отрицательную. Работа силы тяжести по замкнутому пути 1-2-1 равна 0.

Силы, работа каких не зависит от формы и длины пути, а определяется лишь начальным и конечным положением тела, называются консервативными.

Работа консервативных сил по замкнутому пути равна нулю.Пример консервативных сил: сила тяжести, сила упругости пружины, и силы электростатического взаимодействия.

ІІІ. Работа силы трения. Диссипативные силы.

Сила трения F тр . определяется относительной скоростью соприкасающихся тел (сила трения скольжения). Сила трения всегда направленна против движения (), т.е. всегда является силой сопротивления, и поэтому выполняемая ею работа всегда отрицательна и после возвращения тела в исходное положение суммарная работа сил трения отлична от 0 и отрицательная.

Диссипативными силами называются силы, суммарная работа которых при любых перемещениях замкнутой системы всегда отрицательна. Пример: силы трения скольжения и силы сопротивления движению тел в жидкостях и газах. В результате действия диссипативных сил механическая энергия переходит в другие виды энергии.

І V . Работа переменной силы.

Определим работу силы, величина которой изменяется от точки к точке, по закону показанному на рисунке. Разобьем перемещения S на элементарные участки dS , на которых величина силы остается постоянной, тогда элементарная запишется в виде

Полная работа А на всем перемещении от точки 1 до точки 2 равна

или, переходя к пределу,

A

Работа переменной силы равна:

Работа силы упругости с учётом того, что

A= ()

Работа сил ы упругости замкнутому пути 1-2-1

VI . Кинетическая энергия.

Если элементарное перемещение d записать в виде

По II закону Ньютона

тогда

A =

Величина называется кинетической энергией

Работа равнодействующей всех сил действующих на частицу равна изменению кинетической энергии частицы.

Тогда

или другая запись

Если A > 0, то W К возрастает (падения)

Если A > 0, то W К убывает (бросание).

Движущиеся тела обладают способностью выполнять работу и в том случае, если никакие силы со стороны других тел на них не действуют. Если тело движется с постоянной скоростью, то - сумма всех сил действующих на тело равна 0 и работа при этом не совершается. Если тело будет действовать с некоторой силой по направлению движения на другое тело, тогда оно способно совершить работу. В соответствии с ІІІ законом Ньютона к движущемуся телу будет приложена такая же по величине сила, но направленная в противоположную сторону. Благодаря действию этой силы скорость тела будет уменьшаться до его полной остановки. Энергия W К , обусловленная движением тела, называется кинетической. Полностью остановившееся тело не может совершить работы. W К зависит от скорости и массы тела. Изменение направления скорости не влияет на кинетическую энергию.

VII . Потенциальная энергия.

Если тело поднять на высоту h , то падая под действием силы тяжести, тело может совершить работу

Если жать пружину на величину X 2 = X (X 1 = 0), то возвращать в исходное состояние деформированная пружина способна выполнить работу


Следовательно, эти тела обладают запасом энергии, возникающей благодаря взаимодействия тел друг с другом. Эту энергию называют потенциальной. Потенциальной энергией называется энергия, зависящая от взаимного положения частиц системы.

Если тело падает с некоторой высоты h 1до высоты h 2, его потенциальная энергия изменяется от значения

до

Совершенная при этом работа равна

т.е. работа, совершаемая телами, на которые действуют консервативные силы, равна изменению потенциальной энергии с обратным знаком.

Таким образом, когда падающее тело совершает положительную работу, его W П уменьшается. Если тело поднимают вверх, сила тяжести совершает отрицательную работу и W П возрастает.

VIII . Полная механическая энергия.

Механической энергией или полной механической энергией называется энергия механического движения и взаимодействия. Механическая энергия равна сумме кинетической и потенциальной энергии.

Слово "энергия" происходит из греческого языка и имеет значение «действие", "деятельность». Само понятие было впервые введено английским физиком в начале XIX века. Под «энергией» понимается способность обладающего этим свойством тела совершать работу. Тело способно совершать тем большую работу, чем большей энергией оно обладает. Существует несколько ее видов: внутренняя, электрическая, ядерная и механическая энергии. Последняя чаще других встречается в нашей повседневной жизни. Человек с давних времен научился приспосабливать ее под свои потребности, преобразуя в механическую работу при помощи разнообразных приспособлений и конструкций. Мы можем также преобразовывать одни виды энергии в другие.

В рамках механики(один из механическая энергия - это физическая величина, которая характеризует способность системы (тела) к совершению механической работы. Следовательно, показателем присутствия данного вида энергии является наличие некоторой скорости движения тела, обладая которой, оно может совершать работу.

Виды механической В каждом случае кинетическая энергия - величина скалярная, складывающаяся из суммы кинетических энергий всех материальных точек, составляющих конкретную систему. Тогда как потенциальная энергия одиночного тела (системы тел) зависит от взаимного положения его (их) частей в рамках внешнего силового поля. Показателем изменения потенциальной энергии служит совершенная работа.

Тело обладает кинетической энергией, если оно находится в движении (ее иначе можно назвать энергией движения), а потенциальной - если оно поднято над поверхностью земли на какую-то высоту (это энергия взаимодействия). Измеряется механическая энергия (как и прочие виды) в Джоулях (Дж).

Для нахождения энергии, которой обладает тело, нужно найти работу, затрачиваемую на перевод этого тела в нынешнее состояние из состояния нулевого (когда энергия тела приравнивается к нулю). Далее приведены формулы, согласно которым может быть определена механическая энергия и ее виды:

Кинетическая - Ek=mV 2 /2;

Потенциальная - Ep = mgh.

В формулах: m - масса тела, V - скорость его g - ускорение падения, h - высота, на которую тело поднято над поверхностью земли.

Нахождение для системы тел заключается в выявлении суммы ее потенциальной и кинетической составляющих.

Примерами того как механическая энергия может применяться человеком служат и изобретенные в древнейшие времена орудия (нож, копье и т.д.), и самые современные часы, самолеты, прочие механизмы. Как источники данного вида энергии и выполняемой ею работы могут выступать силы природы (ветер, морские течение рек) и физические усилия человека или животных.

Сегодня очень часто систем (например, энергия вращающегося вала) подлежит последующему преобразованию при производстве электрической энергии, для чего используют генераторы тока. Разработано множество устройств (двигателей), способных выполнять непрерывное превращение в механическую энергию потенциала рабочего тела.

Существует физический закон сохранения ее, согласно которому в замкнутой системе тел, где нет действия сил трения и сопротивления, постоянной величиной будет сумма обоих видов ее (Ek и Ep) всех составляющих ее тел. Такая система идеальна, но в реальности подобных условий нельзя достичь.